
Betriebssysteme
Overview

Lehrstuhl Systemarchitektur

WS 2009/2010

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 1/67

What is an Operating System?

• A program that acts as an intermediary between a user of a
computer and the computer hardware

• Operating system goals:
• Execute user programs and make solving user problems easier
• Make the computer system convenient to use
• Use the computer hardware in an efficient manner

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 2/67



Computer System Structure

• Computer system can be divided into four components
• Hardware - provides basic computing resources

• CPU, memory, I/O devices

• Operating system
• Controls and coordinates use of hardware among various applications

and users

• Application programs - define the ways in which the system
resources are used to solve the computing problems of the users
• Word processors, compilers, web browsers, database systems, video

games

• Users
• People, machines, other computers

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 3/67

Four Components of a Computer System

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 4/67



Operating System Definition

• OS is a resource allocator
• Manages all resources
• Decides between conflicting requests for efficient and fair resource

use

• OS is a control program
• Controls execution of programs to prevent errors and improper use

of the computer

• Everything a vendor ships when you order an operating system

Ü No universally accepted definition

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 5/67

Computer Startup

• bootstrap program is loaded at power-up or reboot
• Typically stored in ROM or FLASH memory, generally known as

firmware
• Initializes all (for the boot procedure) relevant HW components
• Loads operating system kernel and starts execution

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 6/67



Computer System Organization

• Computer-system operation
• One or more CPUs, device controllers connect through common bus

providing access to shared memory
• Concurrent execution of CPUs and devices competing for memory

cycles

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 7/67

Computer-System Operation

• I/O devices and the CPU can execute concurrently

• Each device controller is in charge of a particular device type

• Each device controller has a local buffer

• CPU moves data from/to main memory to/from local buffers

• I/O is from the device to local buffer of controller

• Device controller informs CPU that it has finished its operation
by causing an interrupt

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 8/67



Common Functions of Interrupts

• Interrupt transfers control to the interrupt service routine
generally, through the interrupt vector, which contains the
addresses of all the service routines

• Interrupt architecture must save the address of the interrupted
instruction

• Incoming interrupts are disabled while another interrupt is being
processed to prevent a lost interrupt

• A trap is a software-generated interrupt caused either by an
error or a user request

• An operating system is interrupt driven

• Timer interrupt to prevent infinite loop / process hogging CPU
• Trigger interrupt after specific period
• Set up before scheduling process to regain control or terminate

program that exceeds allotted time

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 9/67

Interrupt Handling

• The operating system preserves the state of the CPU by storing
registers and the program counter

• Determines which type of interrupt has occurred:
• polling
• vectored interrupt system

• Separate segments of code determine what action should be
taken for each type of interrupt

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 10/67



I/O Semantics

• Synchronous I/O or blocking I/O
• After the I/O request is submitted with a system call, control

returns to user program only upon I/O completion
• At most one I/O request is outstanding at a time, no simultaneous

I/O processing

• Asynchronous I/O or non-blocking I/O
• After I/O request is submitted, control returns to user program

without waiting for I/O completion
• Polling
• Signal
• Callback function

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 11/67

Direct Memory Access Structure

• Used for high-speed I/O devices able to transmit information at
close to memory speeds

• Device controller transfers blocks of data from buffer storage
directly to main memory without CPU intervention

• Only one interrupt is generated per block, rather than the one
interrupt per byte/word

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 12/67



Storage Structure

• Main memory - only large storage media that the CPU can
access directly

• Secondary storage - extension of main memory that provides
large nonvolatile storage capacity

• Magnetic disks - rigid metal or glass platters covered with
magnetic recording material
• Disk surface is logically divided into tracks, which are subdivided

into sectors
• The disk controller determines the logical interaction between the

device and the computer

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 13/67

Storage Hierarchy

• Storage systems organized in hierarchy
• Speed
• Cost
• Volatility

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 14/67



Caching

• Important principle, performed at many levels in a computer (in
hardware, operating system, software)

• Information in use is copied from slower to faster storage
temporarily

• Faster storage (cache) checked first to determine if information
is there
• If it is, information used directly from the cache (fast)
• If not, data is copied to cache and used there

• Cache smaller than storage being cached
• Cache management important design problem
• Cache size and replacement policy

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 15/67

Computer-System Architecture

• Most systems use a single general-purpose processor
• Most systems have special-purpose processors as well

• Shared-memory multiprocessor (MP) systems, also known as
tightly-coupled systems, grow in use and importance
• Types of MPs (often in combination)

• Multi-socket systems
• Multi-Chip Module (MCM) (=Multi-Core)
• Chip Multiprocessor (CMP)(=Multi-Core)
• Simultaneous MultiThreading Processor (SMT)

• Advantages include
• Increased throughput
• Economy of scale
• Increased reliability - graceful degradation or fault tolerance

• Two types
• Symmetric Multiprocessing (homogenous cores and functionality)
• Asymmetric Multiprocessing (dedicated HW-/SW-functionality)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 16/67



How a Modern Computer Works

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 17/67

Clustered Systems

• Like multiprocessor systems, but multiple systems working
together
• Usually sharing storage via a storage-area network (SAN)
• Provides a high-availability service which survives failures

• Asymmetric clustering has one machine in hot-standby mode
• Symmetric clustering has multiple nodes running applications,

monitoring each other

• Some clusters are for high-performance computing (HPC)
• Applications must be written to use parallelization

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 18/67



Operating System Structure

• Multiprogramming needed for efficiency
• Single user cannot keep CPU and I/O devices busy at all times
• Multiprogramming organizes jobs (code and data) so CPU always

has one to execute
• A subset of total jobs in system is kept in memory
• One job selected and run via job scheduling
• When it has to wait (for I/O for example), OS switches to another

job

• Timesharing (multitasking) is logical extension in which CPU
switches jobs so frequently that users can interact with each job
while it is running, creating interactive computing
• Response time should be < 0.2 second
• Each user has at least one program executing in memory Üprocess
• If several jobs ready to run at the same time ÜCPU scheduling
• If processes don’t fit in memory, swapping moves them in and out

to run
• Virtual memory allows execution of processes not completely in

memory

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 19/67

Operating-System Operations

• Interrupt driven by hardware
• Software error or request creates exception or trap

• Division by zero, request for operating system service

• Other process problems include infinite loop, processes
modifying each other or the operating system

• Dual-mode operation allows OS to protect itself and other
system components
• User mode and kernel mode
• Mode bit provided by hardware

• Mode bit allows to distinguish when system is running user code or
kernel code

• Some privileged instructions are only executable in kernel mode
• System call changes mode to kernel, return from call resets it to user

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 20/67



Process Management

• A process is a program in execution. It is a unit of work within
the system. Program is a passive entity, process is an active
entity.

• Process needs resources to accomplish its task
• CPU, memory, I/O, files
• Initialization data

• Process termination requires reclaim of any reusable resources

• Single-threaded process has one program counter specifying
location of next instruction to execute
• Process executes instructions sequentially, one at a time, until

completion

• Multi-threaded process has one program counter per thread

• Typically system has many processes/threads, some user, some
operating system, running concurrently on one or more CPUs

Ü Concurrency by multiplexing the CPUs among the processes/threads

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 21/67

Process Management Activities

• The operating system is responsible for the following activities in
connection with process management:
• Creating and deleting both user and system processes
• Suspending and resuming processes
• Providing mechanisms for process synchronization
• Providing mechanisms for process communication
• Providing mechanisms for deadlock handling

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 22/67



Memory Management

• All data in memory before and after processing

• All instructions in memory in order to execute

• Memory management determines what is in memory when
• Optimizing CPU utilization and computer response to users

• Memory management activities
• Keeping track of which parts of memory are currently being used

and by whom
• Deciding which processes (or parts thereof) and data to move into

and out of memory
• Allocating and deallocating memory space as needed

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 23/67

Storage Management

• OS provides uniform, logical view of information storage
• Abstracts physical properties to logical storage unit - file
• Each medium is controlled by device (i.e., disk drive, tape drive)

• Varying properties include access speed, capacity, data-transfer rate,
access method (sequential or random)

• File-System management
• Files usually organized into directories
• Access control on most systems to determine who can access what
• OS activities include

• Creating and deleting files and directories
• Primitives to manipulate files and dirs
• Mapping files onto secondary storage
• Backup files onto stable (non-volatile) storage media

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 24/67



Mass-Storage Management

• Usually disks used to store data that does not fit in main
memory or data that must be kept for a long period of time

• Proper management is of central importance

• Entire speed of computer operation hinges on disk subsystem
and its algorithms

• OS activities
• Free-space management
• Storage allocation
• Disk scheduling

• Some storage need not be fast
• Tertiary storage includes optical storage, magnetic tape
• Still must be managed
• Varies between WORM (write-once, read-many-times) and RW

(read-write)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 25/67

Performance Levels of Storage

• Implicit/explicit movements between levels of storage hierarchy
Level 1 2 3 4
Name registers cache main memory disk storage
Typical size < 1KB < 64 MB < 64 GB > 100 GB
Implementation
technology

custom memory
multiport CMOS

on-/off-chip
CMOS SRAM

DRAM PRAM
STT-RAM

FLASH
magnetic disk

Access time
(ns)

0.25 - 0.5 0.5 - 25 80 - 250 5000
5.000.000

Bandwidth
(MB/sec)

20.000 - 100.000 5000 - 10.000 1000 - 5000 20 - 150

Managed by compiler hardware operating
system

operating
system

Backed by cache main memory disk DVD/tape

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 26/67



Migration from Disk to Registers

• Multitasking environments must be careful to use most recent
value, no matter where it is stored in the storage hierarchy

• Multiprocessor environment must provide cache coherency in
hardware such that all CPUs have the most recent value in their
cache

• Distributed environment situation even more complex
• Several copies of a datum can exist
• Various solutions covered in Chapter 17

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 27/67

I/O Subsystem

• One purpose of OS is to hide peculiarities of hardware devices
from the user

• I/O subsystem responsible for
• Drivers for specific hardware devices
• General device-driver interface
• Memory management of I/O including

• buffering (storing data temporarily while it is being transferred)
• caching (storing parts of data in faster storage for performance
• spooling (the overlapping of output of one job with input of other jobs)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 28/67



Protection and Security

• Protection: any mechanism for controlling access of processes or
users to resources defined by the OS

• Security: defense of the system against internal and external
attacks
• Huge range, including denial-of-service, worms, viruses, identity

theft, theft of service

• Systems generally first distinguish among users, to determine
who can do what
• User identities (user IDs, security IDs) include name and associated

number, one per user
• User ID then associated with all files, processes of that user to

determine access control
• Group identifier (group ID) allows set of users to be defined and

controls managed, then also associated with each process, file
• Privilege escalation allows user to change to effective ID with more

rights

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 29/67

System Structures

• System Services

• System Calls

• System Programs

• Operating System Design

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 30/67



Operating System Services

• One set of operating-system services provides functions that are
helpful to the user:
• User interface - Almost all operating systems have a user interface

(UI)
• Varies between Command-Line (CLI), Graphics User Interface (GUI),

Batch

• Program execution - The system must be able to load a program
into memory and to run that program, end execution, either
normally or abnormally (indicating error)

• I/O operations - A running program may require I/O, which may
involve a file or an I/O device

• File-system manipulation - The file system is of particular interest.
Obviously, programs need to read and write files and directories,
create and delete them, search them, list file Information,
permission management.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 31/67

A View of Operating System Services

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 32/67



Operating System Services

• One set of operating-system services provides functions that are
helpful to the user:
• Communication: Processes may exchange information, on the same

computer or between computers over a network
• Communications may be via shared memory or through message

passing (packets moved by the OS)

• Error detection: OS needs to be constantly aware of possible errors
• May occur in the CPU and memory hardware, in I/O devices, in user

program
• For each type of error, OS should take the appropriate action to ensure

correct and consistent computing
• Debugging facilities can greatly enhance the user’s and programmer’s

abilities to efficiently use the system

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 33/67

Operating System Services

• Another set of OS functions exists for ensuring the efficient
operation of the system itself via resource sharing
• Resource allocation - When multiple users or multiple jobs running

concurrently, resources must be allocated to each of them
• Many types of resources - Some (such as CPU cycles, main memory,

and file storage) may have special allocation code, others (such as I/O
devices) may have general request and release code

• Accounting - To keep track of which users use how much and what
kinds of computer resources

• Protection and security - The owners of information stored in a
multiuser or networked computer system may want to control use of
that information, concurrent processes should not interfere with
each other
• Protection involves ensuring that all access to system resources is

controlled
• Security of the system from outsiders requires user authentication,

extends to defending external I/O devices from invalid access attempts
• If a system is to be protected and secure, precautions must be

instituted throughout it. A chain is only as strong as its weakest link.

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 34/67



User Operating System Interface - CLI

Command Line Interface (CLI) or command interpreter allows
direct command entry

• Implemented in kernel

• Implemented by systems program
• Sometimes multiple flavors implemented - shells

• Primarily fetches a command from user and executes it
• Commands built-in
• Names of programs

Ü adding new features doesn’t require shell modification

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 35/67

Bourne Shell Command Interpreter

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 36/67



User Operating System Interface - GUI

• User-friendly desktop metaphor interface
• Usually mouse, keyboard, and monitor
• Icons represent files, programs, actions, etc
• Various mouse buttons over objects in the interface cause various

actions (provide information, options, execute function, open
directory (known as a folder)

• Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces
• Microsoft Windows is GUI with CLI “command” shell
• Apple Mac OS X as “Aqua” GUI interface with UNIX kernel

underneath and shells available
• Solaris is CLI with optional X11 GUI interfaces (Java Desktop, KDE)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 37/67

The Mac OS X GUI

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 38/67



System Calls

• Programming interface to the services provided by the OS

• Typically written in a high-level language (C or C++)

• Mostly accessed by programs via a high-level Application
Program Interface (API) rather than direct system call use

• Three most common APIs are Win32 API for Windows, POSIX
API for POSIX-based systems (including virtually all versions of
UNIX, Linux, and Mac OS X), and Java API for the Java virtual
machine (JVM)

• Why use APIs rather than system calls?

(Note that the system-call names used throughout this text are
generic)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 39/67

Example of System Calls

System call sequence to copy the contents of one file to another file

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 40/67



Example of Standard API

• Consider the ReadFile() function in the Win32 API

• A description of the parameters passed to ReadFile()
• HANDLE file - the file to be read
• LPVOID buffer - a buffer where the data will be read into
• DWORD bytesToRead - the number of bytes to be read into the

buffer
• LPDWORD bytesRead - the number of bytes read during the last

read
• LPOVERLAPPED ovl - indicates if overlapped I/O is being used

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 41/67

System Call Implementation

• Typically, a number associated with each system call
• System-call interface maintains a table indexed according to these

numbers

• The system call interface invokes intended system call in OS
kernel and returns status of the system call and any return values

• The caller need know nothing about how the system call is
implemented
• Just needs to obey API and understand what OS will do as a result

call
• Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into
libraries included with compiler)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 42/67



API - System Call - OS Relationship

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 43/67

Standard C Library Example

• Managed by run-time support library (set of functions

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 44/67



System Call Parameter Passing

• Often, more information is required than simply identity of
desired system call
• Exact type and amount of information vary according to OS and call

• Three general methods used to pass parameters to the OS
• Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers

• Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register
• This approach taken by Linux and Solaris

• Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

• Block and stack methods do not limit the number or length of
parameters being passed

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 45/67

Parameter Passing via Table

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 46/67



Examples of Linux System Calls
Linux

Process fork()
Control execve()

wait()
Memory sbrk()
Control brk()

mmap()
File open()
Manipulation read()

write()
close()

Device mount()
Manipulation read()

ioctl()
Information getpid()
Maintenance getimeofday()
Communication pipe()

socket()
connect()

Protection chown()
chmod()
setuid()

Linux Manual: “bellosa@i30s5: > man 2 fork”

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 47/67

System Programs

• System programs provide a convenient environment for program
development and execution. They can be divided into:
• Program loading and execution
• File manipulation
• Status information
• Device configuration
• Communications

• Most users’ view of the operation system is defined by system
programs, not the actual system calls

Linux Manual: “bellosa@i30s5: > man 1 bash”

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 48/67



Design Objectives

• User goals and System goals
• User goals - operating system should be convenient to use, easy to

learn, reliable, safe, and fast
• System goals - operating system should be easy to design,

implement, and maintain, as well as flexible, reliable, error-free, and
efficient

Ü Important principle to separate
Policy: What will be done? How to reach a goal?
Mechanism: How to do it?
Mechanisms determine how to do something, policies decide
what will be done.
• The separation of policy from mechanism is a very important

principle, it allows maximum flexibility if policy decisions are to be
changed later

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 49/67

Monolithic Systems

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 50/67



Monolithic Systems: Pros and Cons

• Advantages
• Well understood
• Easy access to all system data (they are all shared)
• Cost of module interactions is low (procedure call)
• Extensible via interface definitions

• Disadvantages
• No protection between system and application
• Not stable or robust

• Examples
• uCLinux, PalmOS, VxWorks, OSEK/VDX, eCos

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 51/67

Layered Systems

• System is divided into many layers (levels)
• Each layer uses functions (operations) and services of lower layers
• Bottom layer (layer 0) is hardware

• Easier migration between platforms
• Easier evolution of hardware platform

• Highest layer (layer N) is the user interface
• Lower layers implement mechanisms
• Upper layers implement policies (mostly)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 52/67



Layered Systems: Pros and Cons

• Advantages
• Each layer can be tested and verified independently
• Correctness of layer N only depends on layer N-1

Ü Simpler debugging/maintenance

• Disadvantages
• Just unidirectional protection
• Mutual dependencies (e.g., calls between process, memory and file

management) prevent strict layering
• Need to reschedule processor while waiting for paging
• May need to page in information about tasks
• Memory would like to use files for its backing store
• File system requires memory services for its buffers

• Examples
• THE (Dijkstra), Multics(GE), VOCOS(EWSD)

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 53/67

Monolithic Kernels

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 54/67



Monolithic Kernels: Pros and Cons

• Advantages:
• Well understood
• “Good performance
• Sufficient protection between applications
• Extensible via interface definitions and static/loadable modules

• Uses object-oriented approach
• Each core component is separate
• Each talks to the others over known interfaces
• Each is loadable as needed within the kernel

• Disadvantages:
• No protection between kernel components
• Side-effects by undocumented interfaces
• Complexity due to high degree of interdependency

• Examples
• Linux, Solaris

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 55/67

1969 First Unix by Ritchie & Thompson @ Bell Labs

• DEC PDP-7
• 18-Bit processor
• $ 72000
• 8 KB for Unix OS
• 16 KB user memory for

applications

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 56/67



Solaris Modular Approach

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 57/67

Approaches tackling Complexity and Fault Isolation

• Safe kernel extensions
• SPIN - safe programming language (Modula 3) @ U of Washington
• Spring - OO design @ SUN Microsystems
• VINO - sandboxing @ Harvard

• Exokernel@MIT
• Kernel offers multiplexing of raw HW
• All other control is done at application level

• Microkernels
• MACH @ CMU, L4 @ KIT, EROS, Pebbles, QNX Neutrino

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 58/67



Microkernel Systems

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 59/67

MACH Microkernel

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 60/67



Architectural Cost Monolithic vs. Micro-Kernel

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 61/67

Microkernels: Pros and Cons

• Advantages:
• Easier to test/prove/modify
• Improved robustness & security

(each system component in user level is protected from itself)
• Improved maintainability
• Coexistence of several APIs
• Natural extensibility

(add a new server, delete a no longer needed old server)

• Disadvantages:
• Additional decomposing
• Expensive to re-implement everything using a new model
• Communication (IPC-) overhead Ülow performance
• Bad experiences (2 B$ loss) with IBMs Workplace OS (1991-1995)

1 kernel based on Mach 3.0 for OS/2, OS/400, AIX, Windows, · · ·

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 62/67



Virtual Machines

• A virtual machine takes the layered approach to its logical
conclusion. It treats hardware and the operating system kernel
as though they were all hardware

• A virtual machine provides an interface identical to the
underlying bare hardware.

• The operating system host creates the illusion that a process has
its own processor and (virtual memory)

• Each guest is provided with a (virtual) copy of the underlying
computer

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 63/67

Virtual Machines Benefits

• Multiple execution environments (different operating systems)
can share the same hardware

• Protect from each other

• Some sharing of file can be permitted &controlled

• Communmicate with each other & other physical systems via
networking

• Useful for development, testing

• Consolidation of many low-resource use systems

• “Open Virtual Machine Format”(OVF), allows a VM to run
within many different virtual machine (host) platforms

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 64/67



Example: VMware Architecture

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 65/67

Para-Virtualization

• Presents guest with system similar but not identical to hardware

• Guest must be modified to run on paravirtualized hardware (e.g.,
XEN)

• Guest can be an OS, or in the case of Solaris 10 applications

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 66/67



Solaris 10 with 2 Containers

c©F. Bellosa, G. Liefländer, Silberschatz et al. Betriebssysteme I Overview 67/67


	Overview
	Introduction
	Computer Organization
	Operating System Organization

	System Structures
	System Services
	System Calls
	System Programs
	OS Design



